Detailed Specifications of Open Tender Notice No: 01/2015

S. NO	TENDER NO.	BRIEF DETAILS OF ITEM(S)	PAGE NOS.
1.	14-VII/HRM(2474)15-PB/ <mark>T-21</mark>	Capsule SPRT's	2
2.	14-VII/HRM(2475)15-PB/ T-22	Water Triple Point Cell (TPW) with Maintenance Bath	3
3.	14-VII/DDS(2480)15-PB/ T-23	High Precision Digital Thermometer	4
4.	14-VI/SP(763)15-PB/ T-24	High Precision Spectrum Analyzer	5
5.	14-VI/SP(765)15-PB/ T-25	Wavelength Meter	6
6.	17(1105)15-PB/ T-26	Fabrication & Assembly of Copper Spherical Cavity Resonator & Accessories	7-13
7.	17(1106)15-PB/ T-27	Fabrication & Assembly of Pressure Vessel, Vacuum Vessel & Accessories	14-16

Tender No: 14-VII/HRM(2474)15-PB/T-21

Required items with detailed specification	Quantity
Capsule SPRTs	5
Capsule type Standard Platinum Resistance Thermometer (SPRT)	
Specifications:	
Nominal Resistance at TPW: 25.5 Ω	
Temperature Range: -260 °C to 230 °C	
Resistance Ratio: W(Ga) > 1.11807 and W(Hg) < 0.844235 as per 1TS-90	
Heating Effect at TPW for 1 mA current : ≤ 1.5 m°C	
Drift in R _{TPW} after thermal cycling: < 0.001°C	
Sheath of capsule SPRT : Quartz Glass or Platinum	
Sheath Length: 50 mm ± 10 mm	
Sheath Diameter: 5.4 mm ± 0.5 mm	
Connection leads for capsule SPRTs: 4 conductor lead with plated terminals.	
length ≥ 2m, for above capsule SPRTs, each.	

Tender No: 14-VII/HRM(2475)15-PB/T-22

Sr. No.	Required items with detailed specification	Quantity
1	Water Triple Point Cell (TPW Cell) with Maintenance Bath	
	Water Triple Point Cell (TPW Cell)	
	Specifications:	3
	Cell made of Quartz-glass envelope	
	Dimensions: ID of inner well = 12 ± 1 mm; OD of the cell = $65 \text{ mm} \pm 5 \text{ mm}$	
	Immersion Depth (water surface to well bottom) = $265 \text{ mm} \pm 5 \text{ mm}$	
	Height of the cell = $420 \text{ mm} \pm 30 \text{ mm}$	
	Expanded uncertainty at $k = 2$: $\leq \pm 0.1 \text{ m}^{\circ}\text{C}$; Reproducibility: $\leq \pm 0.02 \text{ m}^{\circ}\text{C}$	
	Water: Vienna Standard Mean Ocean Water (V-SMOW)	
	Isotopic Content: As recommended by BIPM in 2005	
	With conformity Certificate from supplier.	
	Isotopic Analysis for water used in Water Triple Point Cell	1
	Impurity Analysis of water used in Water Triple Point Cell	1
, f f	Maintenance Bath for Water Triple Point Cells: For the realization of above TPW cells given in Sr. No. 1. Bath Stability $\leq \pm 0.001$ °C. Power 230 V \pm 10 V / 50 Hz	ı i
	Ice Mantle Maker: To prepare the Ice Mantle in the above TPW Cells at Sr. No. 1	1

Tender No: 14-VII/DDS(2480)15-PB/T-23

Sr. No.	Required items with detailed specification					
1	High Precision Digital Thermometer					
	Specifications:					
	Accuracy in the whole range (-200 °C to 90	2°C): 0.2 ppm or better				
	Measurement Probes : 4-wire PR	, Resistance, Thermistor				
	Measurement Current : 0 to 10 mA					
	Input Resistance Range (Rx) : 0Ω to ≥ 10					
	Accepted external resistance Range (Rs):	Ω to 10 k Ω , Ratio Range : 0 – 10				
	Internal Resistors Rs : 1 Ω , 10 Ω .	25 Ω, 100 Ω and 10 k Ω				
	Stability of Internal Resistors (Rs): Kept in a temperature controlled oven					
	with s	ability 20 m°C or better				
		Ω), Ratio (Rx/Rs), K, °C				
	Temperature Conversions : ITS-90, Pt-	00, Polynomial, etc				
	Display resolution : 0.001 m°C.	Display Type : Full VGA/LCD				
		3, IEEE-488, Ethernet; Language : English				
11.	Power : 230 V/ 50 F	Z				
	Calibration certificate to meet the above	specifications				

Tender No: 14-VI/SP(763)15-PB/T-24

High Precision Analyzer					
Parameters	Required Specifications				
Frequency					
Frequency Range	$25 \text{ Hz} \ge f \text{ to } f \ge 25 \text{ GHz}$				
Aging per year	$\leq \pm 1 \times 10^{-5}$				
Achievable initial calibration accuracy	$\leq \pm 1 \times 10^{-6}$ Or Better				
Display range for frequency axis	0 Hz, 10 Hz to max. frequency				
SSB phase noise (CF = 1 GHz)					
1 kHz	<-100 dBc (1 Hz)				
10 kHz	<-100 dBc (1 Hz)				
Resolution bandwidths	1 Hz to 10 MHz				
Level					
Max. input level					
CW RF power	30 dBm (RF attenuation ≥ 10 dB) Or Better				
1 dB compression of input mixer	+5 dBm Or Better				
Third-order intercept point	> 15 dBm at more than 25 GHz				
Logarithmic level axis	1 dB to 200 dB Or Better				
Total measurement uncertainty	≤±0.50 dB at f< 10 GHz				
Measurement					
Marker for peak search	Within 2 ms				
Trigger source					
Min. trigger offset resolution	free run, video, external, IF power, RF power 5 ns				
Inputs and outputs					
Setting range of attenuator	0 dB to 50 dB with step ≤2dB				
Interfaces	Multiple port USB plugs, LAN, GPIB				
	Interface for Connection of RF Power Sensor.				
Reference output	1 MHz to 20 MHz, 100 MHz, 640 MHz				
IF output	Should be provided.				
Video output	log, linear				
Display	color touchscreen				
Operating System	Widows 7, 64 bit or higher				

Tender No: 14-VI/SP(765)15-PB/T-25

Detailed Specifications

Laser Wavelength Meter

Measurement range: 350-1120 nm

Absolute accuracy: better than 100 MHz

Quick coupling accuracy with multimode fiber: 150 MHz

Measurement Resolution: 10 MHz

Linewidth option:

Accuracy: 20 MHz

Max. bandwidth: 10 GHz

Measurement speed in Hz

Data acquisition: > 250

Wavelength calculation > 100

Linewidth calculation > 80

Pattern display>30

- Coupling fiber: single mode and multimode with FC/APC connectors converging the optical range 350 nm to 1100 nm. Length at least 2 m.
- Interface: High-speed USB 2.0 connection
- Should be insensitive to intensity fluctuations and side modes.
- A static wave meter based on rugged Fizeau interferometer setup without any moving components
- Device should have advanced program interface with PC
- Device should work as PID controller for frequency locking of the laser.
- Software for interfacing with PC
- Compatible with 220 V-50 Hz Indian standard

Tender No: 17(1105)15-PB/T-26

Fat ication and Assembly of Copper Spherical Cavity Resonator Unit and Accessories as per the design supplied by CSIR-NPL

Specifications:

(A) Spherical Cavity Resonator:

Material: Oxygen Free High Conductivity (OFHC) Copper

Resonator Shape: (Quasi-) Spherical Cavity (Two hemisphere joined together)

- (a) Initial machining: Five-axis CNC lathe machine
- (b) Dimensions of Resonator:

Nominal Radius: r = 50 mm,

Quasi-sphere- r_x = 49.950, r_y = 49.975 and r_z = 50.000 mm

Inner quasi-spherical shape design with CNC machine Programme for triaxial ellipsoid defined by,

$$\frac{x^2}{r^2} + \frac{y^2}{r^2(1+\varepsilon^2)^2} + \frac{z^2}{r^2(1+\varepsilon^1)^2} = 1$$

With r = 49.950 mm, $\varepsilon 1 = 0.001$ and $\varepsilon 2 = 0.0005$.

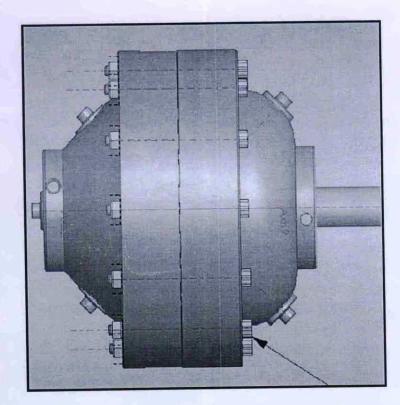
- (c) Final Machining: Inner cavity using multi-axis Diamond turning lathe machine to achieve above quasi-sphere.
- (d) Inner Surface finishing of resonator: better than ± 50 nm
- (e) Equatorial Radius Tolerance: ± 0.003 mm
- (f) Critical thickness of resonator wall: minimum 10 mm
- (g) Collar width = $20 \text{ mm} \pm 0.003 \text{ mm}$, height = $30 \text{ mm} + 30 \text{ mm} \pm 0.005 \text{ mm}$
- (h) Outer diameter at collar ends = 160 mm
- (i) O-ring groove on both side at ID=110 mm OD= 120 mm, tolerance ± 1 mm
- (j) Collar inner and outer surfaces: diamond turned better than \pm 50 nm and \pm 100 nm, respectively.
- (k) Collar nut-bolts = M5, 12 nos *; all the threaded holes equipped with Helicoil inserts.
- (l) Silicone O-ring at the interface of two hemispheres, leak proof for 10 bar Argon pressure. Screws tight at 0.45 N.m.
- (m) Two pins on equatorial plane of hemispheres, for assembly of two hemispheres, with Radius Tolerance: ± 0.003 mm.
- (n) Supply of required jigs and fixtures for Resonator Assembly/mounting at CSIR-NPL.
- (o) Embossing of the letters "CSIR-NPL" (front of upper collar) and "BOLTZMANN PROJECT" (front of lower collar)

(B) Ports and plugs

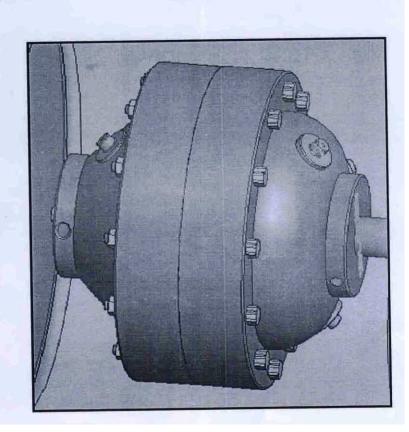
Material: Oxygen Free High Conductivity (OFHC) Copper

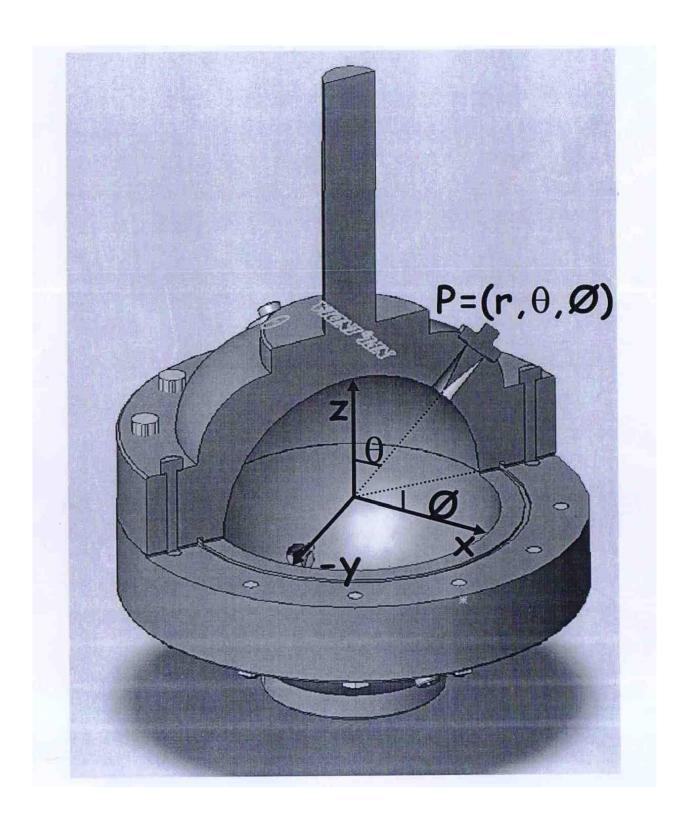
Positions of plugs and thermometers: As given in the drawings and Table.

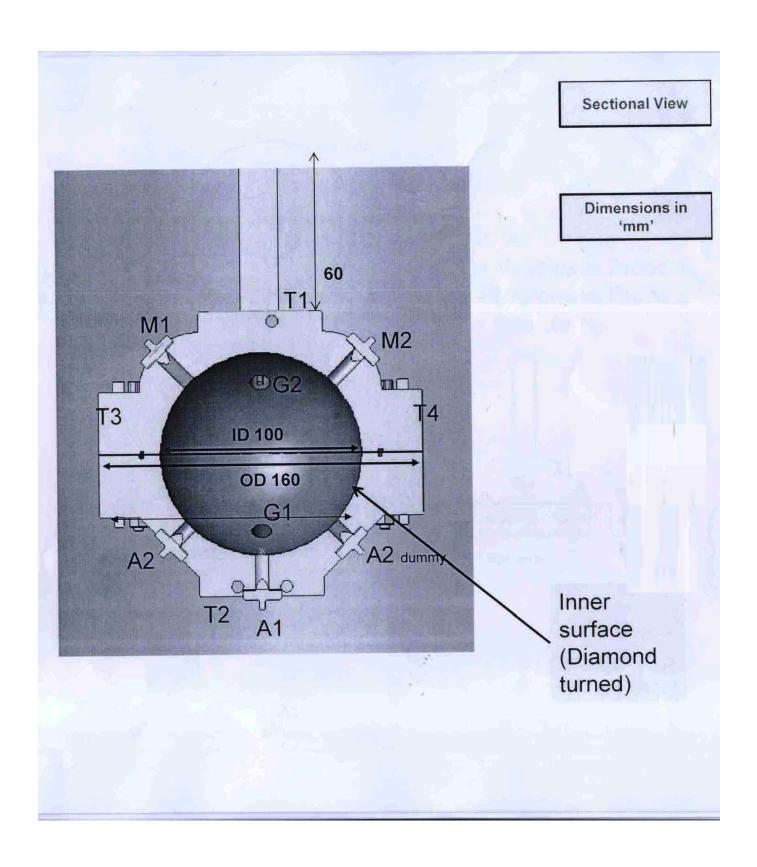
Inner surface finish: diamond turned \pm 50 nm. Curvatures: matching to inner surface of sphere with \pm 0.002 mm.

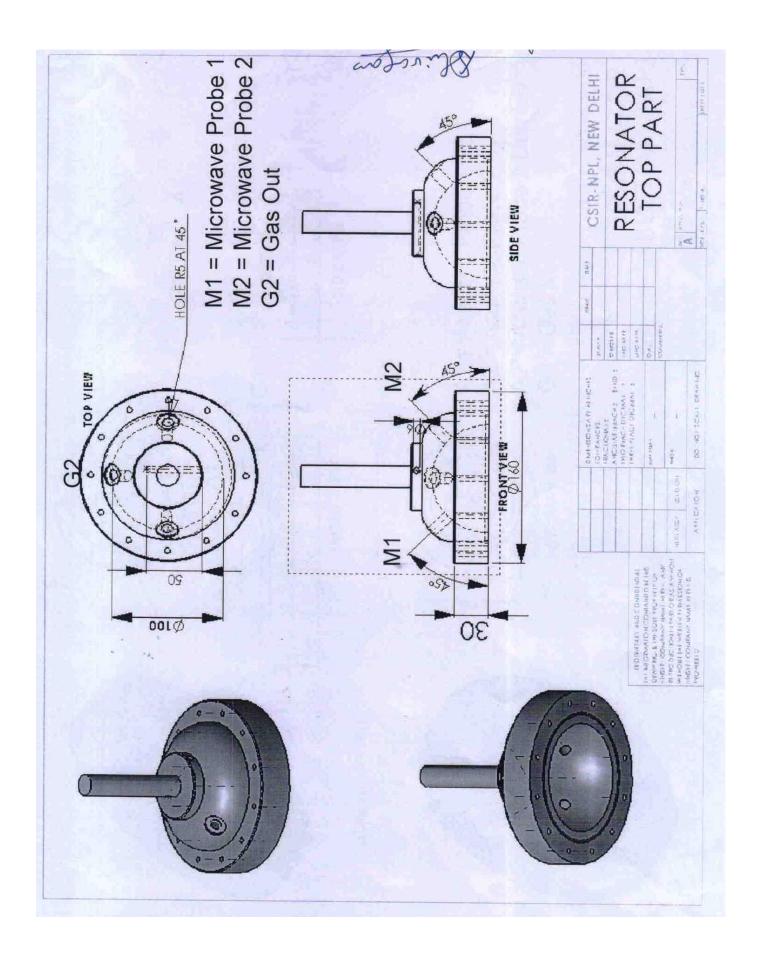

Axial Angle between M1 to M2 = 90° and A1 to A2 = 39.2° , tolerance $\pm 1'$ (0.015 °), tapered surfaces diamond turned.

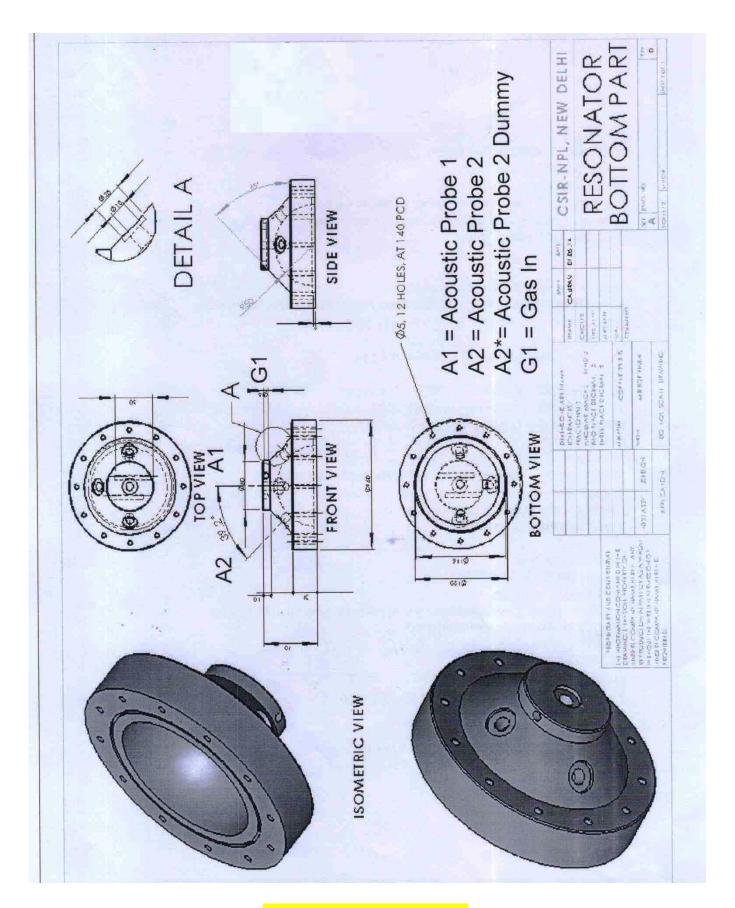
- (a) Gas In: G1; 4 mm to 20 mm tapered plug (Blank one), with 0.6 mm drill (one)**.
- (b) Gas Out: G2: 4 mm to 20 mm tapered plug (Blank one), with 0.9 mm drill (one)**.
- (c) Microwave in: M1: 6 mm to 20 mm tapered plug (Blank one), with 3 mm drill for sensor (one)**.
- (d) Microwave out: M2: 6 mm to 20 mm tapered plug (Blank one), with 3 mm drill for sensor (one)**.
- (e) Acoustic in: A1: 8 mm to 20 mm tapered plug (Blank one), with 7 mm drill for microphone (one)**.
- (f) Acoustic out: A2: 8 mm to 20 mm tapered plug (Blank- one, Dummy-one), with 7 mm drill for microphone (one)**
- (g) All plugs taper surfaces by diamond turning finish.
- (h) All probes attaché with four M3 screws, each*.
- (i) Thermometer 1: T1: drill of Φ 6 mm, length 6 cm, tolerance in Diameter \pm 0.5 mm
- (j) Thermometer 2: T2: drill of Φ 6 mm, length 6 cm, tolerance in Diameter \pm 0.5 mm
- (k) Thermometer 3: T3: drill of Φ 6 mm, length 6 cm (in the collar), tolerance in Diameter \pm 0.5 mm
- (1) Thermometer 4: T4: drill of Φ 6 mm, length 6 cm (in the collar), tolerance in Diameter \pm 0.5 mm
- (m) Embossing of the letters "A1, A2, M1, M2, G1, and G2" on respective ports.
 - * All nut bolts should be made up of SS 316L,
 - ** All the connector probes will be supplied by CSIR-NPL for fixing at your end


(C) Critical Requirements and Measurement Certifications :


- (a) Resonator Cavity inner surface roughness = better than ± 50 nm measurement certificate.
- (b) Equatorial radius = better than ± 0.003 mm by CMM measurement certificate.
- (c) Resonator Cavity Shape and Volume by CMM machine measurement certificate.
- (d) Angle between M1 to M2 = 90° and A1 to A2 = 39.2°, tolerance \pm 1' (0.015°) - measurement certificate.
- (e) The system should be assembled and tested by the party at CSIR-NPL site.
- (f) Pressure (10 bar) and Vacuum Test (10-6 torr) to be shown at CSIR-NPL site.
- (g) Certificate from Supplier for material purity and Thermal Conductivity of Copper, etc.
- (h) Final Engineering Drawings component and assembly wise.
- (i) Warranty: 1 Year warranty of the fabricated parts and apparatus.


Ra	G2 Ga	G1 Ga	(*	A2* Ac	A2 Ac	A1 Ac	M2 Mi	M1 Mi	Probe Ful
Radius	Gas out	Gas in	(* dummy)	Acoustic out	Acoustic out	Acoustic in	Microwave out	Microwave in	Function
50:49	135	45	219.2		140.8	180	45	- 45	θ(°)
50:49.950:49.975 mm	90	90	180		0	0	0	180	φ(°)
175 mm					0 = 39.2	A1 to A2	0 = 90	M1 to M2	Remark




Copper Cavity Resonator Inside Pressure Vessel

Tender No: 17(1106)15-PB/T-27

Fabrication and Assembly of Pressure Vessel, Vacuum Vessel and Accessories as per the design supplied by CSIR-NPL

Specifications:

(A) Pressure Vessel:

Material: Oxygen Free High Conductivity (OFHC) Copper

Shape: Cylinder

(a) Dimensions of Pressure vessel:

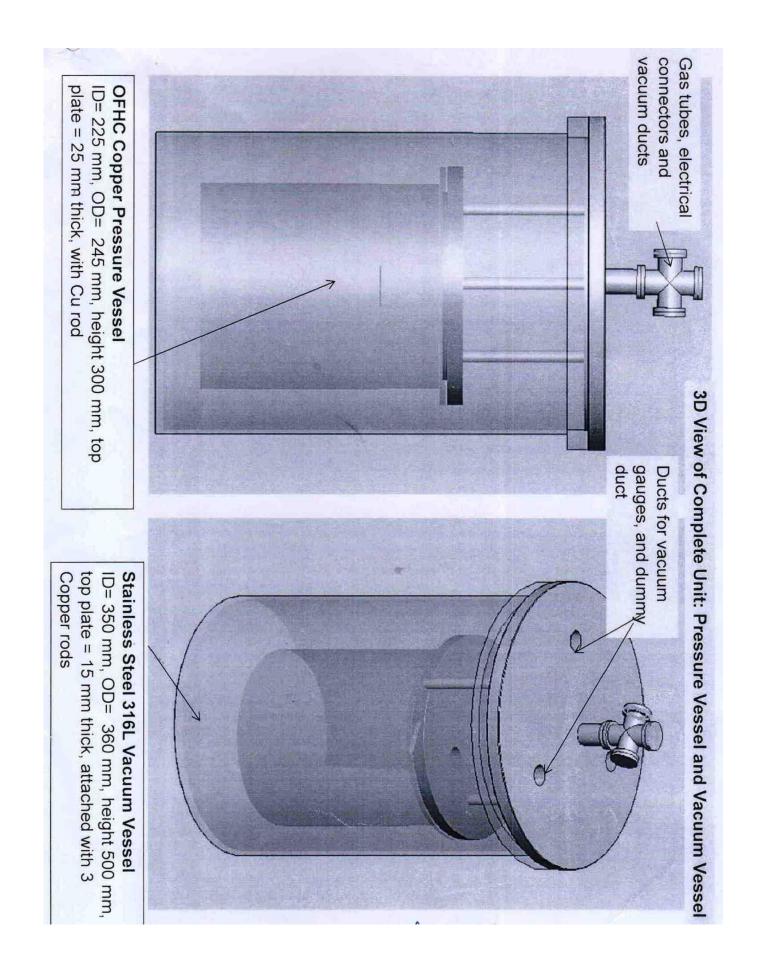
Diameter ID = 225 mm, OD = 245 mm, thickness 10 mm, height = 300 mm, bottom plate brazed.

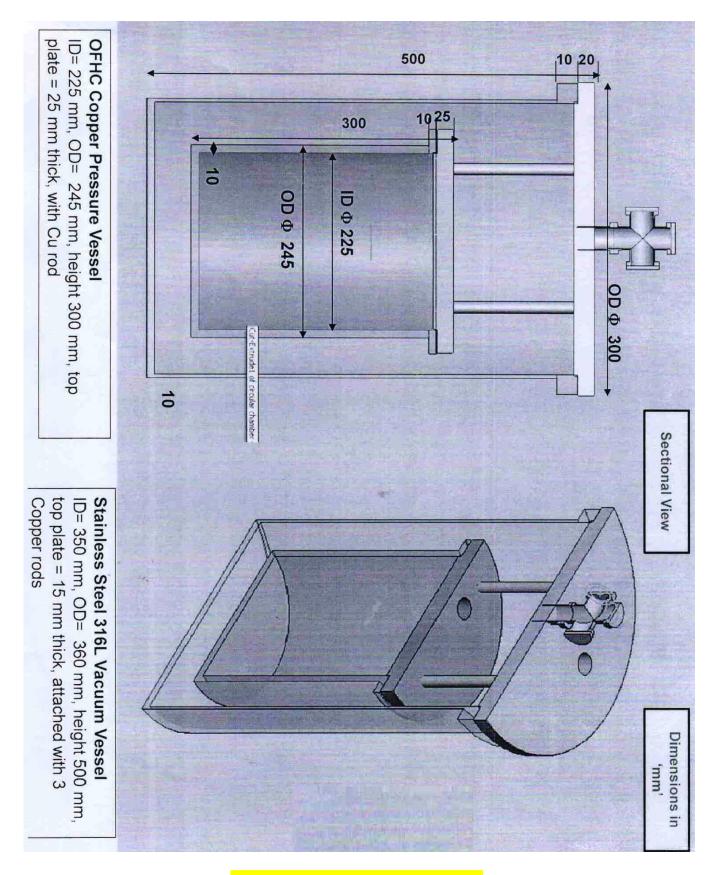
- (b) Top Plate: 25 mm thickness, OD = 285 mm, as shown in design. Fixed with Silicone O-ring and M5 screws *.
- (c) O-ring groove on both side at ID=235 mm OD= 245 mm, tolerance ± 2 mm
- (d) Resonator attached to Top plate of Pressure vessel: with Φ 25 mm and 100 mm long OFHC copper rod
- (e) Two Ducts to Top plate of Pressure Vessel: Gas-in, gas out tube connectors (Swagelok), multi-pin connector for cSPRTs, microwave and acoustic sensors.
- (f) Copper rod attachment to top plate and resonator, as shown in design.
- (g) Anchoring of the OFHC copper (Gas-in) tube (3 m long thick walls for 10 bar pressure) to pressure vessel top plate, by brazing
- (h) Embossing of the letters "CSIR-NPL" (first line) and "BOLTZMANN PROJECT" (second line) on front of Pressure Vessel.

(B) Vacuum Vessel:

Material: Vacuum Grade Stainless Steel 316L

Shape: Cylinder


(a) Dimensions of vacuum vessel:


Diameter ID = 350 mm, OD = 360 mm, thickness 5 mm, height = 500 mm, bottom plate brazed.

- (b) Top Plate: 15 mm thickness, OD = 400 mm, as shown in design. Fixed with Silicone O-ring and M5 screws*.
- (c) O-ring groove on both side at ID=360 mm OD= 370 mm, tolerance ± 2 mm
- (d) Pressure Vessel attached to Vacuum Vessel: with Φ 25 mm and 150 mm long three OFHC rods
- (e) Three Ducts to Top plate of vacuum Vessel: Gas-in, gas out, connector for temperature, microwave and acoustic sensors. One duct with Vacuum gauges and pump connection.
- (f) OFHC Copper rods attachment to top plate and pressure vessel, as shown in design. Top joining by brazing, bottom to copper plate by nut-bolts.
- (g) Anchoring of the Gas-in OFHC copper thick wall tube, gas out copper tube form pressure vessel.
- (h) Embossing or metal plaque of the letters "CSIR-NPL" (first line) and "BOLTZMANN PROJECT" (second line) on front of Vacuum Vessel.

(C) Critical Requirements and Measurement Certifications:

- (a) The system should be assembled and tested by the party at CSIR-NPL site.
- (b) Pressure (10 bar) and Vacuum Test (10⁻⁶ torr) to be shown at CSIR-NPL site.
- (c) Certificate from Supplier for material purity and Thermal Conductivity of Copper, etc.
- (d) Final Engineering Drawings component and assembly wise.
- (e) Warranty: 1 Year warranty of the fabricated parts and apparatus.
 - * All nut bolts should be made up of SS 316L. All materials and accessories to be arranged by party.
 - ** All the connector probes for resonator inside pressure vessel will be supplied by CSIR-NPL for fixing at your end.
